2025-05-08
As companies race to meet emissions reduction targets and comply with evolving regulations, Product Carbon Footprint (PCF) data has become a crucial component of sustainability reporting. But with growing reliance on supplier-provided emissions data, one key question arises: How can businesses ensure that the PCF data they receive is credible, consistent, and verifiable? In this article, we break down how to vet PCF data from suppliers—covering who is responsible, what to look for, and how to implement a robust due diligence process. This process is especially important in light of emerging regulations like the EU’s Carbon Border Adjustment Mechanism (CBAM), which requires importers to report embedded carbon emissions in certain goods.
随着公司竞相实现减排目标并遵守不断变化的法规,产品碳足迹(PCF)数据已成为可持续发展报告中的一个关键组成部分。但随着对供应商提供的排放数据的日益依赖,一个关键问题出现了:企业如何确保他们收到的 PCF 数据是可信、一致和可核实的?在本文中,我们将解析如何审核供应商的 PCF 数据——涵盖谁负责、需要寻找什么以及如何实施一个强大的尽职调查流程。鉴于新兴法规如欧盟的碳边境调节机制(CBAM)要求进口商报告某些商品的嵌入碳排放,这一流程尤为重要。
Product Carbon Footprint (PCF) data measures the total greenhouse gas (GHG) emissions associated with a product’s lifecycle. The scope typically includes raw material extraction, processing, product manufacturing, and transportation. Often, the supplier PCF scope will encompass up to the point of distribution to their customer, sometimes referred to as a cradle-to-gate PCF value.
产品碳足迹(PCF)数据衡量的是产品生命周期中相关的所有温室气体(GHG)排放总量。范围通常包括原材料开采、加工、产品制造和运输。通常,供应商的 PCF 范围将涵盖其向客户分销的点上,有时被称为“摇篮到大门”的 PCF 值。
Companies rely on suppliers to provide this data, particularly for Scope 3 emissions reporting or to support external claims. However, the quality and consistency of this data can vary significantly. This variance causes challenges for the customer as well as concern amongst suppliers, particularly when PCF values are used to influence purchasing decisions.
公司依赖供应商提供这些数据,特别是在范围 3 排放报告或支持外部声明方面。然而,这些数据的质量和一致性可能会有很大差异。这种差异给客户带来了挑战,也引起了供应商的担忧,尤其是在 PCF 值被用于影响购买决策时。
PCF data plays a growing role in:
PCF 数据在以下方面发挥着越来越重要的作用:
Unverified or inaccurate data can have critical consequences, including compliance risks, greenwashing allegations and litigation, and poor decision-making on emissions strategy.
未核实或不准确的数据可能带来严重后果,包括合规风险、漂绿指控和法律诉讼,以及就排放策略做出糟糕的决策。
PCF data quality responsibility is shared across the value chain.
PCF 数据质量责任贯穿整个价值链。
To ensure the reliability of PCF data, companies need a structured vetting process. These steps can help assess data quality, identify red flags, and build trust in supplier emissions disclosures.
为了确保 PCF 数据的可靠性,公司需要有一个结构化的审核流程。这些步骤有助于评估数据质量,识别红旗,并建立对供应商排放披露的信任。
1. Request Methodological Transparency
1. 要求方法论透明度
Ask suppliers to document:
要求供应商提供:
Use a standardized PCF template or form to ensure consistency across suppliers.
使用标准化的 PCF 模板或表格以确保供应商之间的一致性。
2. Check for Alignment with Standards
2. 检查与标准的符合性
Validate that the PCF aligns with ISO 14067, the GHG Protocol Product Standard, or other industry-specific guidelines (e.g., PACT, Pathfinder Framework by WBCSD). Standards help ensure comparability and methodological rigor. See below for more information on how third-party validations vet alignment with specific standards.
验证 PCF 是否符合 ISO 14067、温室气体协议产品标准或其他行业特定指南(例如,PACT、世界企业可持续发展委员会的路径图框架)。标准有助于确保可比性和方法论严谨性。下方将提供有关第三方验证如何核实与特定标准符合性的更多信息。
3. Evaluate Primary vs. Secondary Data Use
3. 评估主要数据与次要数据的使用
Customers prefer PCF data based on primary data (actual emissions, energy use, material inputs) over secondary data (averages or proxies). In some instances, primary data may be required by the PCF methodology. Ask suppliers to specify what portion of their data is primary (see DQR below).
客户更倾向于基于主要数据(实际排放、能源使用、材料投入)的 PCF 数据,而不是次要数据(平均值或替代数据)。在某些情况下,PCF 方法可能需要主要数据。要求供应商说明其数据中有多少是主要数据(见 DQR)。
4. Assess Completeness and Boundaries
4. 评估完整性和边界
Look for red flags like:
寻找红旗标志,例如:
Use a checklist to ensure each stage of the product life cycle is covered, and that all supplier data is vetted in a consistent manner.
使用清单确保产品生命周期每个阶段都得到覆盖,并确保所有供应商数据以一致的方式经过审核。
5. Use Data Quality Ratings (DQRs)
使用数据质量评级(DQR)
Since buyers may not be able to audit every supplier PCF in detail, Data Quality Ratings offer a structured way to evaluate the credibility of submitted data. The DQR score includes key attributes—such as methodological rigor, data source reliability, and completeness—which help prioritize review efforts and flag potentially unreliable figures.
由于买家可能无法详细审计每个供应商的 PCF,数据质量评级提供了一种结构化的方式来评估提交数据的可信度。DQR 分数包括关键属性——如方法严谨性、数据源可靠性和完整性——这些属性有助于优先处理审查工作并标记可能不可靠的数字。
6. Perform Spot Checks and/or Third-Party Validations
执行抽查和/或第三方验证
Where feasible, conduct reviews or request third-party assurance to confirm PCF accuracy. Third-party validation is especially valuable when data underpins public claims, third-party reports, or product labeling, and not just when regulations demand it. Often suppliers may be hesitant to share internal data with a customer, yet otherwise willing to seek external validation through a reputable third-party certifier.
在可行的情况下,进行审查或要求第三方保证以确认 PCF 的准确性。当数据支撑公共声明、第三方报告或产品标签时,第三方验证尤其有价值,而不仅仅是在法规要求时。通常供应商可能不愿意与客户分享内部数据,但愿意通过信誉良好的第三方认证者寻求外部验证。
7. Use Trusted Data-Sharing Platforms
使用可信数据共享平台
Consider digital ecosystems (i.e. Catena-X, iPoint, Circulor) to streamline PCF data exchange. These platforms offer:
考虑使用数字生态系统(例如 Catena-X、iPoint、Circulor)来简化 PCF 数据交换。这些平台提供:
Leveraging such platforms can reduce manual validation efforts and enhance overall data reliability.
利用此类平台可以减少手动验证工作并提高整体数据可靠性。
Vetting supplier PCF data isn’t a one-time task—it should be an ongoing part of your emissions management process. Start by reviewing and vetting all new supplier submissions during initial onboarding, before any data is used in reporting or decision-making.
审核供应商 PCF 数据不是一次性任务——它应该是你排放管理流程中持续的一部分。从在初始入职期间审查和审核所有新的供应商提交开始,在任何数据用于报告或决策之前。
As your reporting cycles progress, conduct annual reviews to ensure existing PCF data remains accurate and aligned with current methodologies and regulatory expectations. It is common to see a supplier revising their PCF values annually. This step is especially important when updating your emissions inventory or preparing disclosures under frameworks like the CSRD or GHG Protocol.
随着报告周期的推进,进行年度审查以确保现有的 PCF 数据保持准确并与当前的方法论和监管预期保持一致。通常可以看到供应商每年修订其 PCF 值。在更新排放清单或根据 CSRD 或 GHG 协议等框架准备披露时,这一步骤尤为重要。
Be prepared to revisit and validate data more thoroughly when regulatory triggers arise. These might include external audits, requests for third-party assurance, or new requirements under evolving mechanisms such as the EU’s Carbon Border Adjustment Mechanism (CBAM). A proactive approach helps ensure compliance, credibility, and resilience in your sustainability reporting.
当出现监管触发因素时,要准备好重新审视并更彻底地验证数据。这些可能包括外部审计、第三方保证请求或欧盟碳边境调节机制(CBAM)等不断发展的机制下的新要求。采取主动的方法有助于确保合规性、可信度和可持续报告的韧性。
To streamline vetting: 为了简化审核:
Over time, this encourages higher-quality data and strengthens trust across the supply chain.
随着时间的推移,这有助于提高数据质量,并加强供应链中的信任。
Vetting supplier PCF data is no longer a “nice-to-have”—it’s essential for credible sustainability reporting and effective climate strategy. By establishing clear expectations, validating data rigorously, and promoting transparency, companies can turn emissions data into a competitive advantage.
审核供应商的 PCF 数据不再是一项“锦上添花”的事情——它是可信的可持续报告和有效的气候战略的必要条件。通过建立明确的标准、严格验证数据并促进透明度,公司可以将排放数据转化为竞争优势。
获得 IMDS&CAMDS&CDX&PPAP 支持
通过 浦巍咨询 的合规服务找到IMDS&CADMS 支持。我们的专家团队从一开始就与IMDS&CAMDS&CDX合作,我们可以为您的团队提供所需的支持,以满足您在 2024年的合规法规和客户要求。立即通过info@puweizx.com联系我们。
请探索我们 浦巍咨询 强大的在线IMDS&CAMDS&CD 认证培训。
IMDS , IMDS Submission, IMDS Training,
Online Training Shanghai Puwei
IMDS , IMDS 提交, IMDS 培训, 在线培训,上海浦巍
CAMDS,CAMDS提交,CAMDS 培训, 在线培训,浦巍咨询
CDX,CDX提交,CDX培训,CDX指导
PPAP,PPAP文件,PPAP等级